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QUADRATURE FORMULAS 
BASED ON RATIONAL INTERPOLATION 

WALTER VAN ASSCHE AND INGRID VANHERWEGEN 

ABSTRACT. We consider quadrature formulas based on interpolation using the 
basis functions 1/(1 + tkX) (k = 1, 2, 3, ...) on [-1, 1], where tk are 
parameters on the interval (-1, 1) . We investigate two types of quadratures: 
quadrature formulas of maximum accuracy which correctly integrate as many 
basis functions as possible (Gaussian quadrature), and quadrature formulas 
whose nodes are the zeros of the orthogonal functions obtained by orthogo- 
nalizing the system of basis functions (orthogonal quadrature). We show that 
both approaches involve orthogonal polynomials with modified weights which 
depend on the number of quadrature nodes. The asymptotic distribution of 
the nodes is obtained as well as various interlacing properties and monotonicity 
results for the nodes. 

1. INTRODUCTION 

Suppose that we want to compute the integral 

f(x) w (x)dx 

with w (x) a positive and integrable weight function on [-1, 1]; then one can 
use an interpolatory quadrature formula by approximating f using interpola- 
tion. In this paper we assume that w (x) > 0 almost everywhere in [- 1, 1] 
and use interpolation by means of the basis functions 

(1. 1) 1 1 1 
(1.1) ~~~~1 + tx'1X + t2X 1+ tnX 

where t1, t2, t3, ... are parameters belonging to (-1, 1). We consider two 
approaches for choosing the interpolation nodes (quadrature nodes). The first 
consists of choosing the n nodes to be the zeros of the orthogonal function 
rn+I obtained by orthogonalizing the system (1.1) using the inner product 

(ff, g) = f(x)g(x)w(x) dx. 

We refer to this as orthogonal quadrature. The second approach that we in- 
vestigate is to choose the nodes in such a way that the quadrature formula is 
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correct for as many basis functions as possible. This gives a quadrature with 
maximum accuracy, and we refer to it as Gaussian quadrature. It is well known 
that both approaches are the same when one is using interpolation by polyno- 
mials, but these choices result in different quadrature formulas when one uses 
interpolation with the basis functions (1.1). 

1.1. Orthogonal functions. It is well known that the zeros of the nth-degree 
orthogonal polynomial with respect to a positive weight function w(x) on 
[-1, 1] are all real, simple, and in the interval (-1, 1), and that they sep- 
arate the zeros of the orthogonal polynomial of degree n + 1 [26, pp. 44-46]. 
These properties can be generalized to other orthogonal systems of functions 
{jbi: i = 1, 2, ... }, where orthogonality is with respect to the weight function 
w (x) on [-1, 1], provided they satisfy the Haar condition. The sequence of 
functions {qE: i = 1, ... , n} satisfies the Haar condition on [-1, 1] if and 
only if for every choice of n points xi E [-1, 1] (i = 1, ... , n) with xi $ x; 
whenever i $7 j one has detl<i,j<n (Pi(xj)) $7 0 (see, e.g., [14]). This condition 
is equivalent to saying that each linear combination q = EZn7 aqi~ has at most 
n - 1 zeros in [-1, 1]. A system {qE i = 1, ... , n} is an extended Haar 
system on [-1, 1] if and only if each linear combination q = EZn7 aqi~ has at 
most n - 1 zeros in [-1, 1], counting multiplicities. Pinkus and Ziegler [25] 
and Videnskil [28] have investigated several properties of systems of orthogonal 
functions {qE: i = 1, 2, . .. , n + 1 } satisfying the Haar condition on [-1, 1] . 
They have shown that kn+I has precisely n zeros in (-1, 1), the multiplicity 
of each zero is odd, and the zeros of On and qn+, are strictly interlacing. 

Suppose that tj E (-1, 1) (i= 1, 2,...) and that ti $7 tj whenever i 7$ j]. 
Then the system { I I } is an extended Haar system on 
[-1, 1] because 

n+1) ~k) Pn(X)tx) 
?>(x) = ai(x) = l+l(1 + tiX) 

where pn (x) is a polynomial of degree at most n, and hence q has at most n 
zeros on [-1, 1], counting multiplicities. If we apply the Gram-Schmidt proce- 
dure to { I+lx 1+lX . . }, then we obtain a sequence of orthogonal functions 
on [-1, 1] with respect to the weight function w (x) . We denote these orthog- 
onal functions by 

rn+1 (tl. .., tn+1; x) = + 1 + 
I 

1+tn+1x __1 + tix 

and, as mentioned before, this rational function has precisely n zeros in 
(-1, 1). It is well known that 

I n ~~~~~~~~2 
min | 1 ai w(x) dx 

(al. , an)ERn _i 1 + tn+Lx 1+ tix 

is obtained when 

ai 
I _ , i = ~~rn+i (ti,... tn; x), 1 A _nlx j11 i 

so that rn+I (t, I. , tn; x) is the error function for the best L2(w)-approxi- 
mation of It, by linear combinations of { 1+tx' I+ Ix .... 
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1.2. Gaussian quadrature. Suppose the system of functions {+X: i = 1, 2, ... } 
is an extended Markov system on [-1, 1], i.e., {qE: i = 1, 2, ... , k} is an 
extended Haar system on [-1, 1] for each k E N. If one considers a quadra- 
ture formula with n nodes which is of maximum accuracy, then one wants to 
integrate the functions qi (1 < i < m) correctly for m as large as possible. If 

i (x) = xi-1, then m turns out to be 2n, and the nodes are the zeros of the or- 
thogonal polynomial of degree n for the weight function w(x) (Gauss-Jacobi 
quadrature). Krein [15] showed that when {qX: i = 1, 2, ... , 2n} is a Haar 
system on [- 1, 1 ], then there exists a unique set of n nodes xi E (- 1, 1) and 
n strictly positive weights f3i such that for k = 1, 2, ..., 2n 

14 n 

(1.2) | kk(X)W(X) dx = A fOk (Xi), 
-1 ~~~~~i=1 

and this gives maximum accuracy. Karlin and Pinkus [ 12] have generalized this 
by allowing nodes with multiplicities, and there are further generalizations by 
Barrow [2] and Bojanov, Braess, and Dyn [3]. 

The system of rational functions (1.1) is an extended Markov system on 
[-1, 1], hence the properties mentioned above are all valid. In particular, 
it follows that the nodes for Gaussian quadrature are all in (-1, 1) and the 
corresponding quadrature weights are all strictly positive. 

2. CONNECTION WITH ORTHOGONAL POLYNOMIALS 

In this section we will make the simple observation that the nodes and weights 
for both orthogonal quadrature and Gaussian quadrature based on the ration- 
al functions (1.1) are closely related to the zeros and Christoffel numbers for 
orthogonal polynomials on [-1, 1] with a weight function that depends on the 
number of nodes. This observation is not new (see, e.g., L6pez and Illn [ 18, 19] 
for Gaussian quadrature), but this interaction makes it possible to use results 
from the theory of orthogonal polynomials to obtain useful properties of the 
nodes and weights for quadrature based on rational interpolation. 

Theorem 1. Let {qk} be the set of basis functions ( 1.1). 
(1) Suppose all the ti are different; then the n nodes for orthogonal quadra- 

ture are the zeros xi, n (1 < j < n) of the orthogonal polynomial Pn (x) with 
respect to the weight function 

(2.1) (x) - wri(x) -1 <X < 1, 

where 
n 

(2.2) rn (x) = J7J(1 + tix). 
i=1 

If t1 = O, then (1.2) holds for k = 1, 2, ... , n + 1 with xi = Xin and 

flj(ti, * * * , tn+l ) = 7rn+l (xj,n)7n (xj, n)Aj, n 

where the Ai, n are the Christoffel numbers corresponding to the orthogonal poly- 
nomial pn (x) for the weight function (2. 1). 
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(2) Suppose all the t1 are different; then the nodes for Gaussian quadrature 
are the zeros x1, , (1 < j < n) of the orthogonal polynomial pn(x) with respect 
to the weight function 

w2n(x) (2.3) w 
7x)= (2(X), 

-1<x , 

and (1.2) holds for k = 1, 2,... ,2n with x; = xj,, and 

/8j (t, I * t2n ) = 7r2n (Xj , n )Aj, n A 

where the A,, , are the Christoffel numbers corresponding to the orthogonal poly- 
nomial Pn(x) for the weight function (2.3). 
Proof. (1) The orthogonal functions obtained by orthogonalizing the system of 
basis functions (1.1) on [-1, 1] with weight function w (x) are of the form 

n+1PnX 
rn+i(t, .. , tn+1 ; X) 

= ak - P(X) (an+ 

k1 + tkX 7rn+1 (X) (a+ 1) 
where pn(x) is a polynomial of degree n. The orthogonality implies that 

I 
Pn (X) Ad c} w(x) dx= ? [ r+1p(x) + 

for every choice of parameters cl, c2, ..., cn . This is the same as saying that 

jPn(X)qn-I(X) (X)( () dx = 
0 

for every polynomial qn.- (x) of degree at most n - 1 . This shows that pn (x) 
is the orthogonal polynomial of degree n for the weight function (2.1). The 
Gauss-Jacobi quadrature for the weight function (2.1) gives 

(2.4) fq1n dx = :Anqn Xn 
I24 7tn(X)7,n+l(x) Z Xj (X,) 

where the Xi ,n are the zeros of pn (x) and q2n - (x) is a polynomial of degree 
at most 2n - 1 . If tI = 0 then 7rn (x) is a polynomial of degree n - 1 . In this 
case choose q2n -1 (x) = ir(x)irn+i (x)/(1 + tkX) to obtain 

I 
w(x) A i, n 7rn (Xin)7n + I(Xi, n) 121 

JI + tkXdx 
= 

I + tkXj,n 
= I 

, 
2 n + I 

from which the assertion follows. 
(2) Let xi xi(t1, ..., t2n) and /3i /3i(t1, ..., t2n) (i = 1, 2, ..., n). 

In order to obtain the nodes xi and weights li , one needs to solve the system 
of equations 

JL wo+',x) dx = E l j = 1, 2, 2n. 

This is equivalent to finding xi and /Bi (i = 1, 2, ... , n) such that 

(2.5) w g~n (()w(x) dx 
= 

E Ai=( 
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for every polynomial q2n- 1 of degree at most 2n - 1. From the theory of or- 
thogonal polynomials (Gauss-Jacobi quadrature) we then know that the nodes 
xi are the zeros of the orthogonal polynomial of degree n for the weight func- 
tion (2.3) and then 

[1 q2n -(X) 
1|1 7(2n() )w(x) dx = E /i,nq2n-1(Xi). 

7r~~n (x) ~ i=1 

Choose q2n-1(X) = 7r2n(x)/(l + tkX) (k = 1, ..., 2n) to obtain the asser- 
tion. 0 

In case the weight function w(x) is equal to either 

I I 

w(x)=t 1x, 

the orthogonal polynomials for the modified weight functions Wn(X) given by 
(2.1) or (2.3) can be found explicitly and are known as Bernstein-Szego poly- 
nomials [26, p. 31]. 

The nodes of both orthogonal quadrature and Gaussian quadrature are equal 
to the zeros of the orthogonal polynomial Pn(x) with respect to a weight func- 
tion depending on n. Therefore, the distribution of the quadrature nodes for 
orthogonal quadrature and Gaussian quadrature is given by the distribution of 
the zeros of orthogonal polynomials with a weight function depending on the 
degree n. The asymptotic zero distribution and various asymptotic results for 
such orthogonal polynomials have been investigated recently by Mhaskar and 
Saff [22-24], Gonchar, L6pez, and Rakhmanov [ 1 1, 21 ] and L6pez [ 1 6, 17, 20]. 
An almost immediate corollary to their results is: 

Theorem 2. Suppose that the asymptotic distribution of the parameters {tf: i < 
n} is given by a measure v on [-1, 1], i.e., for every continuous function f 
on [-1, 1] we have 

(2.6) lim 1 f(ti) = j f(x) d v(x). 
j=1 

If v = p3-1 + q3l + rco + [1 - (p + q + r)]vo, where Ja is the unit measure with 
all its mass concentrated at a, and p, q, r > 0, p + q + r < 1, and 

1 

(2.7) jlogItldvo(t) < x, 

then the asymptotic distribution of the nodes for both orthogonal and Gaussian 
quadrature is given by the measure 

(2.8) # =Pci +ql +ruo +[1 (p+q+r) Iuf, 

where #u0 is the arcsin measure on [-1, 1] with weight function 

/10(X)= WS 7ir 1 
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and jb is an absolutely continuous measure on [-1, 1] with weight function 

(2.9) Yb(X) =-1J dvo(t). 
7 r 1-x2 -1 t 

Proof. For orthogonal quadrature the weight function for the orthogonal poly- 
nomials is w,(x) = w(x)e-2nPn(x) with 

zpn (X) = 2n [log rn+I (X) + log rn (X)], 

whereas for Gaussian quadrature it is Wn(X) = w(x)e-2nqIn(x) with 

VYn = ynlog 7r2n (X). 

By the weak convergence (2.6) we have 

liM (n (X) = lim y/n (x) = p log(l -x) + q log(l + x) n--*Oo n--+Oo 

(2.10) 
+[I -(p+q+r)] j log(1+tx)ddvo(t), 

uniformly on closed sets of (-1, 1) . By [1 1, Theorem on p. 124], the asymp- 
totic distribution of the zeros of the corresponding orthogonal polynomials is 
given by a measure ju on [-1, 1] which is the unique solution of the integral 
equation 

(2.11) ] log | - tj dyu(t) + 47(x) = C, x E [-1, 1], 
Ixt 

where 9 (x) is the right-hand side of (2.10) and C is a constant. We easily find 

ai(x)=plog(l-x)+qlog(l+x) -[l-(p+q+r)] Jlog 1 dvo (- ) 

+ [1 - (p + q + r)] jlog Itl dvo(t). 

The last term in this expression is a finite constant by (2.7) and may be absorbed 
by the constant in (2.11). Notice that (0(x) may become -oo near + 1, which 
at first sight is not allowed when applying the result of [1 1], but a careful analysis 
of the proof in [ 1 1 ] shows that the case under consideration is also covered. The 
integral 

(Ob(X) log 1 dvo - 
(-oo, - )U(l'o) I x -tj t 

is the logarithmic potential of the mass distribution vo (- 1 /t) outside [-1, 1]. 
The integral equation 

j log 1x c tib(t)-(b(x)=C, x E [-I, 1], 

has a unique solution Yb which is the 'balayage' of the mass distribution 
vo(- 1 /t2) outside [- 1, 1 ] to the interval [-1, 1 ] (see, e.g., [21, pp. 126-127]), 
and this measure /1b is absolutely continuous with weight function given by 
(2.9). The arcsin distribution has a constant logarithmic potential on [-1, 1], 
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which can be absorbed into the constant C in (2.1 1). Hence, the unique solu- 
tion of (2.1 1) is the measure given by (2.8). n 

Let us take a closer look at the limiting zero distribution measure 4u given 
by (2.8). If the measure v has all its mass at the point a E (-1, 1) then 

(2.12) #u'(x) - 1 1a 1-a. 
7r -x 1+ax 

If a = 0, then the limiting zero distribution is the well-known arcsin distri- 
bution. For a = -1 the limiting zero distribution is a degenerate distribution 
at 1, whereas for a = 1 the limiting zero distribution is concentrated at -1 . 
If a is close to 1 in (2.12), then #u has even more mass concentrated around 
-1 than the arcsin distribution. The measures with weight functions given by 
(2.9) or (2.12) are thus somewhere between an arcsin measure and degenerate 
measures at + 1 . 

Even though the asymptotic distribution of the nodes for orthogonal quadra- 
ture and Gaussian quadrature is the same, we see that the n nodes for the 
Gaussian quadrature formula depend on 2n parameters ti, whereas the n 
nodes for orthogonal quadrature depend on n + 1 parameters ti. The nodes 
for Gaussian quadrature therefore use more (asymptotic) information of the 
basis functions. 

3. PROPERTIES OF THE NODES 

The orthogonal functions r,(tI, . .. , t,; x) (n = 1, 2, ...) are an extended 
Haar system on [-1, 1], and therefore the properties of the zeros given by 
Pinkus, Ziegler, and Videnskil are valid. For this special Haar system, addi- 
tional useful properties can be proved: 

Theorem 3a. (1) The zeros of r,(t, , ..., t,; x) and r,+i(ti, ..., tn. tn+1 ; x) 
on [-1, 1] are strictly interlacing. 

(2) The zeros of rn(t1 , ... , tn_, tn; x) and rn(t1, ... , tn, tn+1 ; x) on 
[-1, 1] are strictly interlacing. 

(3) The zeros of rn(tl, ..., tii ti+. tn ti; x) (1 ? i< n) and 
rn (ti , -... , tn; x) are strictly interlacing. 

Proof. Property (1) is proved in Pinkus and Ziegler [25] and Videnskii [28], 
and property (2) can be found in Pinkus and Ziegler [25]. For property (3) we 
notice that 

rn (t, .., tn ; x) = rn- i(ti,.. ti- I ti+1,*, tn ; x) 
- Kjrn- (tj, .., ti-i, ti+i,.. tn-1 , ti; x) 

and 

rnw(th e tire , ti+, tn ti X) 

=rn-i(ti , ... , ti-1 ti+1, .. , tn-1 , ti ; x) 

- K2rn- I (t1,.., ti- i ti+ i,... tn-1, tn; x),~ 

where 
,.,- i;(i ~ t- tij 

j 
n 

. 
sX) 1 x 
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and 
(rn- I(t1,*. ti-I, ti+1,*. tn-1,~ ti; X),1l 

11rn-l(tl,., ti- I ti+, ... tn; x|2 

Let xi (i = 1, 2, ...n - 1) be the zeros of rn(t1, ..., tn; x); then 

(3.1) rn (t1,.. ti-I, ti+1 ... , tn . ti; Xj) 
= rn-l(tl, * *, ti-I , ti+1, *- , tn-1 5 ti; Xj)( - KIK2). 

If we compute the L2-norm of rn(ti, ... , tn; x), then 

jjrn(t1,** tn; X)112 = rn(tl,1 * tn; x), 
1 

= (rn-l(tl,? ,ti-I ti+1,* ,tn; X), 5 

-)C (rn- I(t1,** ti-I, ti+1,... tn-1 r ti ; X) rI+tX 

_ |rn-1 (t1,.. ti-I, ti+l!) ... tn ; X) 112 (I - K2) 

so that 1 - K1K2 > 0. Then property (3) follows immediately from (3.1) and 
property (1). 0 

We have similar results for the nodes corresponding to Gaussian quadrature. 
Now the order of the parameters t1, ... , t2n is irrelevant. 

Theorem 3b. Let x1(t1, ..., t2n) (i = 1, 2, ... , n) be the quadrature nodes 
for maximum accuracy. 

(1) The n nodes Xi(tl,..., t2n) and the n + 1 nodes Xi(tl,*, t2n+1, t2n+2) 
are strictly interlacing. 

(2) The n nodes xi(t1, ..., t2n.1, t2n) and xi(t1, ..., t2n-1, t2n+1) are 
strictly interlacing. 

Proof of (1). Let Xo(t1, ... , t2n) = -1 and xn+l (t1, ... , t2n) = 1 
Suppose that the nodes xi(t1, ... , t2n) and xi(t1, ... , t2n+2) are not strictly 

interlacing; then either 
(a) xi(t1, .., ,t2n) = x(tl, ...,t2n+2) for some i and j with 1 < i < n 

and 1 < j?n+l,or 
(b) 

xj(tl, . . t2n+2) , Xj+1 (t1 t2n+2) E (Xi(ti,*-* t2n) , Xi+1 (t1 t2n)) 

forsome i and j with 0<i<n and 1 < j? n. 
We will show that both (a) and (b) are impossible. 
Case (a). Suppose that there are e nodes xi(t1, ... , t2n+2), i E {i1 i2, ***, 

ie}, such that xi(ti , ... , t2n+2) e {x(t I, ... , t2n): 1 < j < n}; then ob- 
viously e < n, and thus there exists a k such that Xk(tl, ... , t2n+2) ? 

{xi(ti, ... , t2n) 1 < j < n}. Let q be a linear combination of the first 
2n basis functions given in (1.1) such that Ob(xi(t1, ... , t2n)) = 0 for i = 
1e2, ... ,n and (xi(ta , ... , t2n+2))eto for ide 1e i .. ,2n+ I but io k. 
Then we already have 2n - e equations to determine 0.In addition we add 
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the equations q(zj) = 0 for i = 1, ... , f - 1, where the zi differ from the 
2n - X points that we already used. For such q$ we have 

p1 n 

] r(x)w(x) dx = fli(ti , ..., t2n);(Xi(t1, *** , t2n)) = 0. 
-1 ~~~~~i=1 

But we also have 
p1 n+1 

] (x)w(x) dx = E fi(ti .. , t2n+2)>(Xi(tl, * * , t2n+2)) 
-1 ~~~~~i=l 

= flk(tl, ... t2n+2)0(Xk(tl, t2n+2)) 0, 

because / can have at most 2n - 1 zeros and flk > 0. This gives a contradic- 
tion. 

Case (b). Let 0 be the linear combination of the first 2n basis functions 
given in (1.1) such that Ob(xi(t1, ... , t2n)) = 0 for i = 1,2,... , n, and 
q(xi(tl, ... , t2n+2)) = 0 for i = 1, 2, ... , n+1 butwith i 0 j and i $ j+ 1. 
This gives 2n - 1 conditions to determine q$, and for such b we have 

rl n 

] q(x)w(x) dx = fli(ti , ... , t2n)0(Xi(t1, * 
, 

t2n)) 
= 0. 

-1 ~~~~~i=1 
On the other hand, we also have 

n+1 

] q(x)w (x) dx = > i(tl, . . ., t2n+2)0(Xi(tl, .. -,t2n+2)) 

= flj(t, .., t2n+2)0(xj(tl 1 t2n+2)) 

+ fj+l (6l * t2n+2)0(Xj+l (6l * t2n+2))- 

By assumption we have 

sign4(xj(tl, ..., t2n+2)) = sign q(xj+l(t1, .. t2n+2)) 

and since the weights f3j and fli-l are positive, we have a contradiction. 

Proof of (2). Suppose that 

Xi Xi (6, . . ., t2n) and Yi xi(t, . . .t2n, t2n+l) 

are not strictly interlacing; then either 
(a) xi = yj for all i = 1, 2, ..., n; or 
(b) xi=yj forsome i and j with 1 <i<n and 1 < j n;or 
(c) Yj, Yj+i e (xi, xi+l) for some i and j with 0 < i < n and 1 < j < 

n - 1. 

Case (a). The system of basis functions (1.1) is a Haar system on [-1, 1], 
hence we can find a function fk in the linear space spanned by the first 2n - 1 
basis function in (1.1) such that 

fk(Xi)=1ik i= 1,2,. n, 
fk(Sti) =?, i= 1, 2, .. n- 1, 

where Xi E (-1, 1) \ {xi, x2, ..., xn} are n - 1 arbitrary points. Then, on 
the one hand, 

n 

| fk~x~w~x) dx = EI ,~fli ..., t2n)fk(Xi) = /Jk(tl, . t2n) 
-1 ~~~~~i=l 
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and on the other hand (since xi = yi for 1 < i < n) 

%1 ~~~~~n 
fk(x)w(x)dx = (t. t2n-1, t2nal)fk(Xi) 

= ,k(tl, *. t2n-!, t2n+1). 

Hence, fi(t1 , .. , t , t2n+l) = 8i1(tl, ..., t2n) for i = 1, 2, ..., n. There- 
fore, the quadrature formula will give the exact result for every function I+1t~x 
with i = 1, 2, ... , 2n + 1. Let b be a linear combination of these 2n + 1 
basis functions such that b(xi) = 0 and $'(xi) = 0 (i = 1, 2, ... , n); then k 
does not change sign on [-1, 1] because +(x) = +p2j(x) /l2n +l(x) with Pn a 
polynomial of degree n and lr2n+l given by (2.2). This implies that 

X (x)w(x) dx 0 0. 

This contradicts 
1'1 n 

] (x)w(x) dx = E fliq(xi) = 0. 

Cases (b) and (c). One can obtain a contradiction in a way similar to cases (a) 
and (b) of (1). 0 

The following result of Markov (see, e.g., [26, Theorem 6.12.1 on p. 115]) al- 
lows us to give more information on the behavior of the nodes xi(tI, . . . , tn. t) 
for orthogonal quadrature and xi(tI, . . . , t2n-I, t) for Gaussian quadrature, as 
functions of t e (-1, 1). 

Theorem (Markov). Let w(x, t) be a weight function on [a, b] depending on 
a parameter t such that w (x, t) is positive and continuous for a < x < b and 
c < t < d. Suppose that Wt(X, t) = a w(x, t) exists and is continuous for 
a < x < b and c < t < d, and that the moments 

b 
|xkwt (x, t) dx, k =0,1,2,... ,2n -1, 

converge uniformly in every closed subinterval c' < t < d' of (c, d) . If the zeros 
of the orthogonal polynomial Pn (X, t) with weight function w (x, t) are denoted 
by xi(t) (i = 1, 2, ... , n) and if Wt(X, t)/w(x, t) is a strictly increasing 
(decreasing) function of x E (a, b), then x1(t) is a continuously differentiable 
and strictly increasing (decreasing) function of t E (c, d) for every fixed i. 

Theorem 4. (1) If xi(ti, ..., tn, t) is the ith node for orthogonal quadrature 
with n nodes, then xi(ti, ... , tn S t) is a continuously differentiable and strictly 
decreasing function of t E (-1, 1). 

(2) Every node xi(tl, ... , t~ni, t) for Gaussian quadrature with n nodes 
is a continuously differentiable and strictly decreasing function of t e (- 1, 1) . 

Proof. By Theorem 1 (1) we know that xi(tI, .. . , tn, t) is the ith zero of the 
orthogonal polynomial Pn (x, t) of degree n for the weight function 

w(x, t) = w(X) 
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A simple computation gives 

Wt(X, t) _ X 
W(X, t) I +tX 

and this is a decreasing function of x E (-1, 1). The result thus follows by 
Markov's theorem. 

Similarly, by Theorem 1(2), for the nodes xi(ti, ... , t2,n., t) of Gaussian 
quadrature one can use Markov's theorem for the weight function 

w(x, t) = W2n(XY1+x) 72n -I (X ) ( + tX ) 
to obtain the desired result. a 

We can also give some monotonicity results for the first and last quadrature 
coefficients. Let Ai (tI, ... , tn, t) be the quadrature coefficients correspond- 
ing to the nodes xi(t1, ... , tn, t) for orthogonal quadrature with n nodes, 
and let tI = 0; then the first quadrature coefficient lu (tI, ... , tn. t) is a 
strictly decreasing continuously differentiable function of t E (-1, 1), and 
the last quadrature coefficient /n (ti, ... , tn, t) is a strictly increasing contin- 
uously differentiable function of t E (-1, 1). Similarly, if fi (t I, ... , t2n-I, t) 
are the quadrature coefficients for Gaussian quadrature with n nodes (with 
tj = 0), then flu (tl, ... , t2n -I, t) is a strictly decreasing continuously differen- 
tiable function of t E (-1, 1) and fin(t I, ... , t2n-I, t) is a strictly increasing 
continuously differentiable function of t E (- 1, 1) . The proofs of these results 
are rather technical (see [27]) and since only the extreme quadrature weights 
are considered we do not include them here. 

4. CONVERGENCE RESULTS 

If the integral 11 f(x)w(x) dx is approximated by the orthogonal quadra- 
ture sum with n nodes, 

n 

E fi(tl,**, tn+l)f(xi(tl,** tn+l)), 
j=1 

we denote the error by 
I1 n 

Eo?f= ] f(x)w(x) dx -E Zfi(ti, ... , tn+li)f(xi(t, . t. , )) 
j=1 

The error of the Gaussian quadrature formula is denoted by 
1 n 

Egf = ] f(x)w(x) dx - E Ai(ti t2n)f(xi(tl , t2n)) 
j=1 

It is clear that these quadrature formulas are only going to be relevant if for 
a large enough class of functions f one has En~f -* 0 as n -* oc and/or 
Engf -* 0 as n - oc . It is well known that the sequence of basis functions 
(1.1) is dense in C[- 1, 1] with respect to the uniform norm if and only if 

00 

(4.1) Z(1-ICkI)= 0, 
k=l 
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where Ck = -l/tk -V1 / tk - 1 [1, p. 254, ?7].1 The following result is straight- 
forward, but we mention it for the sake of completeness. 

Theorem 5. Let t1, t2, t3, ... be distinct parameters in (-1, 1) and fn+ I(x) 
be the best approximation of f E C[- 1, 1] using linear combinations of 1 

1 1 
1 +t2X S *S1+t,+I X 

(1) If t1 = 0, then for orthogonal quadrature, there exists a positive constant 
M not depending on n such that 

IEnfI < Mf - fn+1 1loo1 
As a consequence, En~f -* 0 as n -* oc for every bounded Riemann integrable 
function on [-1, 1] whenever (4. 1) holds. 

(2) For Gaussian quadrature we have similarly 

JEngfjl < M|| f-f2nJ10oo 

As a consequence, Engf - 0 as n -* oc for every bounded Riemann integrable 
function on [-1, 1] whenever (4.1) holds. 
Proof. The result for orthogonal quadrature can be proved as in the case of 
polynomial interpolation [8, pp. 126-129]. For Gaussian quadrature we only 
need to show that Eni=1 /3i(tI, ..., t2n) is bounded. If tj = 0, then 

n I 

I O ei(ti, ... t2n)=j w(x) dx. 

If tj 0 0, then 
I w(x )' 8 X t +(tdx = I: - 4 

-1 I+tIxdx =IIi+ tixi. 

The function 1/(1 +tlx) has the minimum value 1/(1+1tll) on [-1, 1], hence 

1 n I 1W(x) fi(t +t2n) <tx dx, 

which shows the desired boundedness. O 

Let f E C[- 1, 1] and denote by Lnf the rational interpolant of f at the 
points xi(ti, ..., tn+I) (i = 1, 2,..., n) using the basis functions I41x 

I+12x' ... ' The previous theorem implies that 

1 I1 

-lim L (Lnf)(x)w(x) dx =] f(x)w(x) dx, 

whenever (4.1) holds. The rate of convergence depends on how well f can 
be approximated in the uniform norm by the basis functions (1.1), and this 
depends on the choice of the parameters ti. We now show that rational in- 
terpolation converges in L2(w) and thus also in L1 (w), thereby extending the 
famous Erdos-Turan result for polynomial interpolation [6]. 

IThere is a misprint in this reference: 'interior' should be replaced by 'exterior'. We thank P. 
Borwein for pointing out this misprint. 
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Theorem 6. Suppose t1 = 0 and t2, t3, ... are distinct parameters in (-1, 1) 
such that (4.1) holds. If fE C[-I, 1] and if Lnf(x) = E= I aix interpolates 
f atthezeros x1(ti,... ,tn+1) of rn+l(tl,... ,tn+;x), then I1Lnf-f1I2-*O 
as n -+ o0. 

Proof. Let fn (x) be the best uniform approximation of f using the basis func- 
tions {I 

I 
. , "x }; then 

ILnf - f12 < Ilf - fnI12 + IlLnf - fn 112. 
Clearly, I1f - fnII2 ` 0 as n - 0 0. Now [(Lnf)(x) - fn(x)]2 is a linear 
combination of the functions Xj/[7r2(X)] (j = 0, 1, ... , 2n - 2), and by (2.4) 
the quadrature formula is therefore exact for [(Lnf)(x) - f (x)]2. This gives 

n 

L - fn1 - = > fi[(Lnf)(xi) -n(Xi)]2 
i=l 

= 1f34[f(x1) - fn(X)]2 < If -fn 112 w(x) dx. 
i=l1- 

The result now follows because Ilf - fnI1o -- 0 as n o-+0o0 

5. GENERALIZATIONS 

All the properties and results for orthogonal quadrature that we have given 
above are also true for the orthogonal system obtained by orthogonalizing the 
system of basis functions 

(5.1) 1 & 17 0 1 i= +tX1,. ,k, (5.1) Il + tix ' Iat 1 + tx It=ti at1 t=ti 

where k e N, Pi E N, and Ek1 ,u = n+ 1. If the parameters t1 are all distinct 
and in (-1, 1), then this system of functions is an extended Haar system on 
[-l,1]. If t ? {t1,... ,tk},then 

rn+1 (tj8) t() t; x) = + ai, j - 
k + ~~tX + 

E 
a11 + tX 

is orthogonal to the system (5.1) with respect to the weight function w (x); if 
t = te for some e with 1 < e < k, then 

t(YI) t(#e1 1) t('4+0 t(YO t(#e +1 1 X). rn+1t-l t1 ki-l+ k ' 1 

ate l +tX tXtjte i=+ j=? t=ti 

is orthogonal to the system (5.1) with respect to the weight function w (x) . Be- 
cause of the Haar property it follows that these orthogonal functions rn+l have 
precisely n zeros in [-1, 1] which are all simple [25, 28]. These orthogonal 
functions share the same properties as the orthogonal functions for the system 
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(1.1): the reason for this is that Theorem 1 can be extended to this system. 
Similarly, all the results and properties for Gaussian quadrature that we have 
given are also true for the system of basis functions (5.1) with k E N, jti E N, 
and Ek I yj = 2n. The only things that change are the weight functions (2.1) 
and (2.3), which need to be appropriately modified. 

Theorem 7. (1) The zeros of rn+1(t(1), ..., tk; x) are also the zeros of the 
orthogonal polynomial Pn (x) of degree n for the weight function 

w(x) 
Hk-1(1 + tiX)2'u(i1 + tkX)2Ik-I 

(2) The n nodes for Gaussian quadrature with the system (5.1) are the zeros 
of the orthogonal polynomial p, (x) of degree n for the weight function 

w(x) 

rHi=l ( 1+ tix)8i 

This theorem allows us to use Markov's theorem to deduce properties of the 
nodes and the weights for orthogonal quadrature, but since everything is along 
the same lines as before, we do not give the details. 

6. NUMERICAL EXAMPLES 

From Theorem 5 it follows that rational quadrature rules will be effective 
whenever the function to be integrated can be approximated well using the basis 
functions (1.1). Gautschi [9] has shown that functions which have an infinite 
number of poles but are regular otherwise, can be integrated most effectively by 
Gauss rational quadrature rules by choosing the parameters t1 in an optimal 
way. Gautschi [10] explicitly used such quadrature rules for the computation 
of generalized Fermi-Dirac and Bose-Einstein integrals. 

For functions with most mass concentrated near the endpoints of the interval 
[-1, 1 ], one could choose the parameters t4 in such a way that more quadrature 
nodes are situated near + 1 . If we take the parameters 

(6.1) t 1= -- ieN, 

then there will be more quadrature nodes near -1 than near + 1 . In fact, from 
Theorem 2 it follows that the asymptotic distribution of the nodes for both 
orthogonal quadrature and Gaussian quadrature is degenerate at the point -1 . 
Let GR( n ) be the n-point Gaussian quadrature rule, and OR( n ) the n-point 
orthogonal quadrature rule. The nodes and weights for n = 6 are given in 
Table 1. Our computations have been made on an IBM 3090/400E VF using 
Brent's multiple precision package [5], and an independent computation was 
made using MATHEMATICATM [29].2 The nodes and weights for GR( n) and 

2MATHEMATICA is a trademark of Wolfram Research, Inc. 
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TABLE 1. Nodes and weights for the quadrature rules GR(6) and OR(6) 

nodes for GR(6) weights for GR(6) 
-0.9797390942708352 0.0528758827013522 
-0.8853794251591486 0.1411615118844550 
-0.6822351336410264 0.2748067575758422 
-0.3156675377072605 0.4657849717765712 

0.2408527285476740 0.6221630733806293 
0.8155273184304977 0.4432078026811501 

nodes for OR(6) weights for OR(6) 

-0.9736320979338328 0.0685126325838336 
-0.8537169072027923 0.1760476819554412 
-0.6094091127142633 0.3192517203251832 
-0.2057016948376719 0.4878639628808742 

0.3414560761423378 0.5765658940369015 
0.8474273771128526 0.3717581082177663 

OR( n) have been computed by using the zeros and Christoffel numbers for 
the orthogonal polynomial of degree n with the corresponding weight (2.1) 
for orthogonal quadrature and (2.3) for Gaussian quadrature. These orthog- 
onal polynomials have been computed using their three-term recurrence rela- 
tion. The recurrence coefficients were obtained using Chebyshev's algorithm 
with modified moments; the latter were computed recursively by decomposing 
the rational weight function into simple fractions. 

Consider the integral 

'1 = j wcoe-w(x+l) dx co > 0. 

This function has more mass near - 1 than near + 1 , especially for large co. In 
Table 2 we have given the absolute values of the relative errors for the Gaussian 
quadrature sum and the orthogonal quadrature sum corresponding to the ratio- 
nal functions with parameters given by (6.1), together with the Gauss-Legendre 
quadrature sum GL( n ) with n nodes. The rational quadrature rules behave 
similarly and give better results than the Gauss-Legendre quadrature rule. 

TABLE 2. Relative errors for I, 

co n GR(n) OR(n) GL(n) 
5 2 0.664(-1) 0.121 0.394 

6 0.261(-5) 0.207(-6) 0.161(-4) 
10 0.215(-8) 0.842(-10) 0.212(-5) 
14 0.494(-11) 0.514(-13) 0.112(-5) 

25 2 0.978 0.988 0.999 
6 0.118(-4) 0.255(-4) 0.206 
10 0.397(-8) 0.467(-8) 0.201(-2) 
14 0.206(-12) 0.122(-12) 0.153(-4) 
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TABLE 3. Relative errors for I2 

n GR(n) OR(n) GL(n) 
2 0.587(-6) 0.168(-4) 0.366(-2) 
6 0.161(-19) 0.262(-16) 0.567(-7) 
10 0.986(-31) 0.132(-29) 0.116(-11) 

The rational quadrature rules perform well because the system of rational 
functions with parameters (6.1) emphasizes the behavior of the integrand near 
- 1, and even though the quadrature nodes have a degenerate asymptotic dis- 
tribution at -1, the parameters still satisfy (4.1), so that the basis functions 
are dense in C[-1, 1]. The fact that the poles of the rational functions are 
all close to -1 also explains why both rational quadrature rules give similar 
results: adding extra rational functions is not giving much extra information 
about the integrand. 

As a second example we consider the integral 

f1 dx 
2- J (x+ 3)(x+2) 

The integrand has a branch cut on the interval [-3, -2] and is in fact a Stieltjes 
function given by 

1 1 ff2 1 dt 
- 

r 

-I 
- 

+(x+3)(x+2) 7rCJ_3x-t /(3+t)(-2-t) 

Stieltjes functions can be well approximated by rational functions with poles on 
the cut. Therefore we will choose the parameters t1 in such a way that the poles 
of the basis functions (1.1) are distributed nicely on [-3, -2]. In order to do 
this we observe that the zeros of a Chebyshev polynomial of the first kind T3k (x) 
are also zeros of Chebyshev polynomials T3m (x) for every m > k. Hence, we 
take tj = 0 (so that Theorem 1 can be applied) and t2, t3, ... , t3m+l equal to 

-2 
ti+1 5, 

Xi, 3m - 5 

where the xi, 3m are the zeros of the Chebyshev polynomial T3m (x) ordered in 
such a way that xl 3m , X2,3m , X3,3m are the zeros of T3 (x) in decreasing order; 

X4,3m , .. . , X9,3m are those zeros of T9(x) which are not zeros of T3(x) , again 
in decreasing order; and recursively we let X3k- 1+1 3m , ... , X3k 3m be the zeros 
of T3k (x) which are not zeros of T3k 1 (x) , in decreasing order. In this way the 
poles of the basis functions (1.1) are dense on [-3, -2] and they are distributed 
on [-3, -2] according to the arcsin measure on this interval. In Table 3 we 
have given the relative errors for the two rational quadrature rules and for the 
Gauss-Legendre rule. 

It is clear that the rational quadrature rules give a much better approximation 
to the integral I2 than the Gauss-Legendre rule. The reason is obvious: the 
integrand is a Stieltjes function which can be approximated much better by 
rational functions than by polynomials, especially when we choose the poles of 
the rational functions on the interval [-3, -2] on which the Stieltjes function 
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TABLE 4. Relative errors for I3 

_c n GR(n) OR(n) GL(n) 
2 5 0.46(-11) 0.26(-8) 0.52(-5) 

10 0.16(-24) 0.79(-22) 0.10(-10) 
15 - 0.17(-24) 0.20(-16) 

1.1 5 0.21(-8) 0.26(-5) 0.21(-l) 
10 0.19(-22) 0.30(-16) 0.26(-3) 
15 0.81(-25) 0.67(-25) 0.32(-5) 

1.01 5 0.43(-8) 0.93(-5) 0.24 
10 0.91(-22) 0.24(-15) 0.64(-1) 
15 0.40(-26) 0.61(-26) 0.17(-1) 

TABLE 5. Relative errors for I4 

co n GR(n) OR(n) GL(n) 
2 5 0.65(-5) 0.79(-8) 0.47(-4) 

10 0.12(-10) 0.24(-21) 0.19(-9) 
15 0.22(-16) 0.15(-24) 0.56(-15) 

1.1 5 0.17(-1) 0.27(-5) 0.13 
10 0.32(-3) 0.30(-16) 0.34(-2) 
15 0.38(-5) 0.27(-24) 0.62(-4) 

1.01 5 0.37 0.16(-5) 0.78 
10 0.93(-1) 0.40(-16) 0.40 
15 0.23(-1) 0.11(-24) 0.16 

has its singularities. Also the Gaussian quadrature rule is slightly better than the 
orthogonal rule, because the Gaussian rule with n nodes already uses 2n - 1 
poles on the interval [-3, -2], whereas the orthogonal rule only uses n poles. 

Finally we consider the integrals 

[1 7rt/wO [1( rt/O \2 

I3 = - dt~ 14= A 
13 = ]I sin(7rt/w) = J sin(7rt/co)) dt 

Walter Gautschi provided us with numerical results for the approximation of 
these two integrals with rational quadrature rules. The integrands contain in- 
finitely many poles at the points P1 = CO, P2 = -a), P3 = 2a), P4 = -2w, *. . 
For I3 these are simple poles but for I4 double poles. For the orthogonal 
quadrature rule we choose the parameters t4 in such a way that they match up 
with the poles of the integrand, i.e., 

t1=0, tj+I=-1/pi, i=1,2. 

For the Gaussian rule we choose ti = -1/pi. The results for Gaussian ra- 
tional quadrature GR( n), orthogonal rational quadrature OR( n), and Gauss- 
Legendre quadrature GL( n) are given in Table 4 and Table 5.3 Both rational 
quadrature rules perform very well for I3, which is simple to understand since 

3These computations were done by W. Gautschi on the Cyber 205, with a requested error toler- 
ance of 0.5 x 10-25 . 
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these rules explicitly take into account the poles of the integrand. The Gauss- 
Legendre rule does not take these singularities into account, and as a result it 
behaves poorly. 

When the integrand has poles of second order, then there is also a difference 
in the performance of the rational quadrature rules. 

For the integral I4 the orthogonal quadrature rule OR( n) works very well, 
even for wj close to one. Both the Gauss-Legendre rule GL( n ) and the ration- 
al Gaussian rule GR( n) have difficulties when co approaches 1, and even for 
co = 2 they do not converge as fast as the orthogonal quadrature rule OR( n ). 
For GL( n ) the reason is clear: no poles of the integrand are being taken into 
account. On the other hand, GR( n ) approximates the integrand by a rational 
function with simple poles, whereas the integrand actually has double poles. 
Underestimating the order of the poles thus seems to degrade the convergence. 
By choosing q2n1 (X) = 7rn(x)irn+I(x)/(1 +tkX)2 in (2.4) we see that the orthog- 
onal quadrature rule integrates (1 + tkX)-2 (k = 2, 3, ... , n) exactly. Hence 
the orthogonal rule is more natural when the integrand has poles of order two, 
but in this case one could also use the Gaussian quadrature rule corresponding 
to the basis function 

1 1 1 1 1 1 
I + tIXI (I + tX)2 I1 + t2X (I + t2X )2 1+ tX ( + tnX )2 

which by Theorem 7 uses the zeros of the orthogonal polynomials of degree n 
with weight function H1nI (I + tx)-2. 
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